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Abstract. We present a suite of programs that implement decades-old algorithms for computation of seismic surface wave re-

flection and transmission coefficients at a welded contact between two laterally homogeneous quarter-spaces. For Love as well

as Rayleigh waves, the algorithms are shown to be capable of modelling multiple mode conversions at a lateral discontinuity,

which was not shown in the original publications or in the subsequent literature. Only normal incidence at a lateral boundary is

considered so there is no Love-Rayleigh coupling, but incidence of any mode and coupling to any (other) mode can be handled.5

The code is written in Python and makes use of SciPy’s Simpson’s rule integrator and NumPy’s linear algebra solver for its

core functionality. Transmission side results from this code are found to be in good agreement with those from finite difference

simulations. In today’s research environment of extensive computing power, the coded algorithms are arguably redundant but

SWRT can be used as a valuable testing tool for the ever evolving numerical solvers of seismic wave propagation. SWRT is

available via GitHub (https://github.com/arjundatta23/sw_reftrans.git).10

Copyright statement. TEXT

1 Introduction

There is a vast body of seismological literature on analytical methods for describing surface wave propagation in laterally

inhomogeneous media where the lateral heterogeneity takes simple forms such as inclusions of regular shape or plane inter-

faces. In particular, models with plane vertical interfaces where the elastic parameters have a first-order discontinuity, received15

considerable attention in the 1960s and 70s as idealizations of sharp, large-scale heterogeneities that actually exist in the Earth

such as continental margins and grabens. The convenience of a vertical boundary is that the wavefield can be expressed in

terms of incident, reflected and transmitted waves – this not only yields physical insight into the problem but also reduces it

to the evaluation of reflection and transmission coefficients at the lateral boundary. In general the reflection and transmission

of surface waves at a plane vertical interface cannot be solved for exactly because the boundary conditions for stresses and20

displacements cannot be satisfied exactly by a field of surface waves alone, which in turn is because the surface wave eigen-

functions for a (layered) half-space do not form a complete set of basis functions for the elastic wave equation. The complete
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basis set consists of a discrete number of surface wave modes plus a continuum of homogeneous body waves (see e.g. Levshin,

1989; Alsop et al., 1974). A range of approximate methods were therefore developed by theoretical seismologists to study the

interaction of surface waves with geological discontinuities and these have been comprehensively reviewed (Malischewsky,

1987; Keilis-Borok, 1989). In this paper we revisit some of the original algorithms with the aim of demonstrating their hitherto

undemonstrated ability to model mode conversions. In the process we also present them under the unified framework of the5

Herrera (1964) scalar product.

We focus on the body wave or ray-theoretical method of Gregersen and Alsop (1974) for Love waves and the Green’s

function method of Its and Yanovskaya (1985) for both Love and Rayleigh waves. For comparison we also show results

obtained with the seminal mode-matching method of Alsop (1966). Although the methods highlighted in this study have since

been advanced and improved upon (Vaccari et al., 1989; Its, 1991; Its and Lee, 1993; Romanelli et al., 1996), their ability to10

model mode conversions – a critical aspect of surface wave propagation through laterally homogeneous media – even in the

simplest of scenarios, has never been shown.

2 Implementation of methods

Since SWRT is based on previously published techniques, we only discuss the implementation of those techniques in the SWRT

package. Throughout this section, we use ar and bt to denote reflection and transmission coefficients respectively at any given15

frequency. Mode indices r and t span all the modes that exist, at that frequency, on the incidence and transmission sides of the

vertical discontinuity.Ar andBt denote the corresponding amplitudes of modes (with respect to normalized eigenfunctions) in

the two media. In this paper we focus on transmission results (rather than reflection) because the transmitted wavefield is easily

measured from the frequency-domain finite difference solver which we use for testing. Accordingly, the end result of each

algorithm is presented in terms of a ‘transmission surface ratio’ (Alsop, 1966, hereafter Alsop66). This quantity – shorthand20

for surface displacement ratio of transmitted to incident waves – provides a physically meaningful representation, independent

of normalization conventions, of surface wave propagation through a discontinuity.

On the issue of normalization, the main difference between the SWRT implementation and the original literature, is in the

normalisation of eigenfunctions used. The original publications used eigenfunctions φ normalized by the Herrera (1964) scalar

product, whereas in this study we have worked with eigenfunctions φu, which are normalized to unit displacement at the25

surface; this leads to the appearance of normalization factors in the equations defining the algorithms.

As the Hererra normalization and the consequent relationship between φ and φu underscore the entire SWRT implementa-

tion, these are first discussed before getting into the details of individual algorithms. Herrera (1964) provided an orthogonality

relation for surface wave eigenfunctions which, for plane waves in 2-D and suitably chosen coordinate axes, can be written as

1
2

∞∫

0

∑

q=x,y,z

[
um

q σ
n∗
xq −un∗

q σm
xq

]
dz =Hmnδmn (1)30

where m and n are mode indices, and ∗ denotes the complex conjugate. uq and σxq are components of the displacement and

traction vectors respectively, on a surface normal to the propagation direction, x.
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For the type of problems considered in this study, with the lateral discontinuity in the yz-plane and Love waves propagating

along the x-direction, ux = uz = 0, σxx = σxz = 0 and σxy = ikµuy . The displacement uy is proportional to the eigenfunction

Φ, so in this case (1) yields the simple norm

Hm = ikm

∞∫

0

µ(z)[Φm(z)]2dz (2)

With the exception of possible scalar factors, the original authors of all the algorithms considered in this study used Love wave5

eigenfunctions normalized as:

km

∞∫

0

µ(z)φm(z)φn(z)dz = δmn (3)

which implies Hm = i. SWRT on the other hand uses Φ = φu, and

km

∞∫

0

µ(z)[φu
m(z)]2dz =Nm 6= 1 (4)

From equations (3) and (4) it is clear that φ and φu are related as10

φm =
φu

m√
Nm

(5)

With this introduction we go on to discussing the individual methods. The Rayleigh equivalent of the development following

Eq. (1) is deferred to Appendix A since it is only required for one of the methods.

2.1 Mode-matching method of Alsop (1966)

Of the three methods included in this study, this is the one where mode conversions have actually been demonstrated in15

the published literature. Nonetheless the method, hereafter referred to simply as the Alsop method, is included here for its

remarkable simplicity.

ar and bt are obtained as solutions to the matrix equations

a = C−1D

b =
[
PT
]
1
−PT a (6)20

where

C = S + PTT + TPT + PVPT

D =− [S]1−
[
PTT

]
1

+
[
TPT

]
1

+
[
PVPT

]
1

(7)
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and [X]i denotes the ith column of any matrix X. The matrices P, S, T and V in the above equations are composed of the

following integrals:

Pij =
k

(1)
i√

N
(1)
i N

(2)
j

∞∫

0

µ(1)φ
u(1)
i φ

u(2)
j dz

Sij =
1√

N
(1)
i N

(1)
j

∞∫

0

φ
u(1)
i φ

u(1)
j dz

Tij =
1√

N
(1)
i N

(2)
j

∞∫

0

φ
u(1)
i φ

u(2)
j dz

Vij =
1√

N
(2)
i N

(2)
j

∞∫

0

φ
u(2)
i φ

u(2)
j dz (8)

To compute the transmission surface ratio (Y ), we note that, for incident mode s and transmitted mode t, the ratio of transmitted5

to incident displacement is

Btφ
(2)
t

Asφ
(1)
s

= bt×
(
φ

(2)
t

φ
(1)
s

)
= bt×


 φ

u(2)
t√
N

(2)
t

×

√
N

(1)
s

φ
u(1)
s




.

In this study φu(1) and φu(2) have unit displacement at the surface, therefore

Yst = bt×

√√√√N
(1)
s

N
(2)
t

(9)10

2.2 Body wave method of Gregersen and Alsop (1974)

This method is founded on representing the field of surface waves as a superposition of plane homogeneous and inhomogeneous

body waves. Body wave reflection and transmission coefficients are computed over the vertical interface to obtain outgoing

stresses and displacements on the interface. This outgoing stress-displacement system is regarded as the source of outgoing

surface waves, whose amplitudes are computed via its projection onto the outgoing surface wave eigenfunctions. In this study15

the method, hereafter referred to as the GAl method, is implemented, as follows for Love waves:

1. SH wave reflection and transmission coefficients over the vertical contact are calculated using the phase velocity of

medium 1:

Elementary formulae are used for the SH reflection and transmission coefficients (ΓR and ΓT ). The textbook expressions

(e.g. Lay and Wallace, 1995, pp.102):20

ΓR =
ρ1β1cosθi− ρ2β2cosθt

ρ1β1cosθi + ρ2β2cosθt

ΓT =
2ρ1β1cosθi

ρ1β1cosθi + ρ2β2cosθt
(10)
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for plane SH rays at an interface between two solid media (the symbols have their usual meanings) are rewritten in terms

of phase velocity because cosθi and cosθt can be rewritten (by Snell’s law) in terms of the phase velocity c1 of the

incidence side medium (Keilis-Borok, 1989):

ΓR =
µ1/c1−µ2

√
1/β2

2− 1/β1
2 + 1/c12

µ1/c1 +µ2

√
1/β2

2− 1/β1
2 + 1/c12

ΓT = 1 + ΓR (11)5

These equations are applied individually to each section of the vertical interface, i.e. each layered contact (there is really a

layer index in addition to the medium index in equations (10) and (11) but it has been left out for notational convenience)

to obtain a vector of body wave coefficients over the entire vertical interface.

2. Outgoing stress and displacement as a function of depth over the vertical interface are calculated using the eigenfunction

of the incident Love wave mode and the SH reflection/transmission coefficients.10

3. Coupling between the interface stress-displacement system and the eigenfunctions of outgoing Love waves (eigenfunc-

tions of medium 1 for reflection, those of medium 2 for transmission) is calculated by means of the Herrera (1964) scalar

product.

Since Herrera’s scalar product may be computed for any two stress-displacement vectors Sm and Sn, this method uses

Love-Love and SH-Love systems. In the former case Eq. (1) defines the orthonormalization of Love wave eigenfunctions; in15

the latter it yields the coupling coefficient for the GAl method. This means that when the surface wave modes are normalized

by (1), the coupling computed (by the LHS of the same) between any stress-displacement system and a surface wave mode, is

the amplitude generated of that normalized surface wave mode.

So if SR, ST are the SH stress-displacements on the interface computed in step 3 of the algorithm, reflection and transmission

coefficients are given by (SR,φ
(1)) and (ST ,φ

(2)). Therefore in this study they are computed as20

ar =
(SR,φ

u(1)
r )√

N
(1)
s N

(1)
r

bt =
(ST ,φ

u(2)
t )√

N
(1)
s N

(2)
t

(12)

In the above expressions the norms N have the usual definition given by (4), whilst the numerators are similarly evaluated

using µ and k values corresponding to the incidence side medium for ar and to the transmission side medium for bt. Finally,

as with the Alsop method, transmission surface ratio is given by25

Y = b×
√
N (1)

N (2)
=

(ST ,φ
(2))

N (2)
(13)
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2.3 Green’s function method of Its and Yanovskaya (1985)

This method, hereafter referred to as the GF method, has been implemented in SWRT for both Love and Rayleigh waves. We

follow the algorithm of Its and Yanovskaya (1985, hereafter ItsYan85), who obtained the coupled system of equations:

ar =−
∑

t

btPrt

bt = S∗st +
∑

r

arP
∗
rt (14)5

where Prt and Sst are the coupling integrals

Prt =
1

J
(1)
r

∞∫

0

[
σ(1)

r ·u(2)
t −u(1)

r ·σ(2)
t

]
dz

Sst =
1

J
(2)
t

∞∫

0

[
σ(1)∗

s ·u(2)
t −u(1)∗

s ·σ(2)
t

]
dz (15)

where u and σ are the displacement and traction vectors on the vertical plane of discontinuity, and Jm = 2Hm. Using the

appropriate u and σ in (15) leads to explicit expressions for the Love and Rayleigh cases.10

Building the system of equations

1. Love waves — these expressions are easily derived as there is only one component of displacement and traction relevant

for equations (15). The norm Jm reduces to 2i×Nm and for eigenfunctions normalized by (3), J (1)
r = J

(2)
t = 2i, leading

to factors of 1/2 outside the integrals in (15). In this study, working with φu, P and S are computed as

Prt =
1

2
√
N

(1)
r N

(2)
t


k(2)

t

∞∫

0

µ(2)φu(1)
r φ

u(2)
t dz− k(1)

r

∞∫

0

µ(1)φu(1)
r φ

u(2)
t dz


15

Sst =
1

2
√
N

(1)
s N

(2)
t


k(2)

t

∞∫

0

µ(2)φu(1)
s φ

u(2)
t dz+ k(1)

s

∞∫

0

µ(1)φu(1)
s φ

u(2)
t dz


 (16)

2. Rayleigh waves — the expressions have been derived by Keilis-Borok (1989), using a nomenclature similar to that of Aki

and Richards (2002) for the stress-displacement vector, although with a sign error in one of the terms. The expressions

used in this study are different, because they are based on the stress-displacement vector as defined by Gomberg and

Masters (1988). The stress-displacement vector is β1,β2,β3,β4 and in terms of these quantities, the coupling integrals20

are (Appendix A):
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Prt =
i

ωJ
(1)
r

∞∫

0

[
ψt(2)

xx β
r(1)
2 −ψr(1)

xx β
t(2)
2 +β

r(1)
1 β

t(2)
4 −βt(2)

1 β
r(1)
4

]
dz

Sst =
i

ωJ
(2)
t

∞∫

0

[
ψs(1)

xx β
t(2)
2 +ψt(2)

xx β
s(1)
2 −βs(1)

4 β
t(2)
1 −βt(2)

4 β
s(1)
1

]
dz (17)

with the norm given by

Jm =
2i
ω

∞∫

0

[ψm
xxβ

m
2 −βm

4 β
m
1 ]dz (18)

and ψxx defined by Eq. (A2). Note that in the Rayleigh case, the eigenfunctions themselves have subscripts 1− 4; these5

should not be confused with the medium indices 1− 2 which are shown as superscripts and in parenthesis.

Solving the system of equations

In our implementation Prt and Sst are both real-valued, so the system of equations (14) is solved as

T∑

t=0

Prtbt + ar = 0

bt−
R∑

r=0

Prtar = Sst (19)10

where R and T are the highest mode numbers that exist in the incidence side and transmission side media respectively, at the

given frequency. Eq. (14) is easily recognized as a matrix equation of the form Cx= d:



P00 P01 · · · P0T 1 0 · · · 0
...

. . . . . . 0
. . . . . .

PR0 · · · PRT 0 · · · 1

1 0 · · · 0 −P00 −P10 · · · −PR0

0
. . . . . .

...
. . . . . .

0 · · · 1 −P0T · · · −PRT







b0
...

bT

a0

...

aR




=




0
...

0

Ss0

...

SsT




(20)

which is a square system of equations of size (T +R+2). In general R 6= T and this can lead to cumbersome code because of

the variability in the declaration of array sizes. However SWRT achieves efficiency with a single declaration regardless of the15

relationship between R and T . In the special case when R= T ( =M − 1, say), the coefficient matrix of this system is itself

composed of square sub-matrices:

C =


PM IM

IM −PT
M


 (21)
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Finally, we note that in computing the transmission surface ratio (Y ), there is a subtle difference between the Love and

Rayleigh cases. In the Love wave case, the appearance of the normalization factors for both media outside the brackets in (16)

ensures that the ar and bt obtained from (19) are defined with respect to eigenfunctions normalized according to (3); therefore

as before, Yst = bt×
√
N

(1)
s /N

(2)
t . However the same is not true of the Rayleigh case — no simple relationship such as (5)

exists for Rayleigh wave eigenfunctions and the implementation (17) ensures that the reflection and transmission coefficients5

obtained from (19) are in fact defined with respect to the eigenfunctions β, which have unit surface displacement. Hence in the

Rayleigh case, Yst = bt.

The three methods described in this section are each implemented as Python programs in the SWRT code. The only inputs

these programs require are the eigenfunctions for the two media on either side of the lateral discontinuity, and the depths of

horizontal interfaces in these media. The programs have been tested using published results in the literature (Appendix B); in10

the following section we focus on results from the latter two methods, which are incomplete in the published literature.

3 Demonstration of results

We use a single model to demonstrate the capabilities of the GAl and GF methods. This is a model of an ocean-continent

boundary known as ‘model L’ (Figure 1), and was used by both Gregersen and Alsop (1974, hereafter GregAl74) and ItsYan85.

Both of these studies considered the propagation of a Love wave fundamental mode through this model, in both directions and15

over a range of frequencies in which a number of higher modes exist on the transmission side. However both studies have

shown only the transmission of the fundamental mode, with no mention of any conversion to higher modes. Using the SWRT

code, we find that considering periods as short as ∼ 7 seconds, there is significant conversion of the fundamental mode to up

to the 4th overtone, for propagation in either direction (Figure 2). Concurrently, the fundamental mode result obtained from

SWRT is in good agreement with the published results (see Appendix B).20

To validate our results of transmission to multiple higher modes, we compare the SWRT result with results from finite

difference (FD) simulations. The FD simulations are performed using the method of Roecker et al. (2010) duly adapted for

teleseismic surface wave modelling. However for the FD comparison, model L is modified slightly in that the crustal thickness

on the oceanic side is taken as 5 km rather than 7 km (see Fig. 1). In the rest of this section, all ‘model L’ references imply this

modified version.25

Figure 3 shows excellent agreement between the SWRT results (GAl and GF methods) and FD results for Love waves in

model L. Only forward propagation is considered. The corresponding Rayleigh case is shown in Figure 4.

Figures 2-4 represent the core contribution of this study. The reader is reminded that model L has only been used as a

demo example in this study. The published literature does not contain any examples of mode conversions modelled by the GAl

method or the GF method, whilst the SWRT code provides complete solutions (with coupling to all possible modes) in any30

model containing a single vertical contact between two laterally homogeneous media. To emphasize this point as well as the

general accuracy of the SWRT code, we provide a second demonstration using the model of Sato (1961). This is a unique model

(Figure 5) in which the Love wave reflection and transmission problem has an exact solution — the Love wave eigenfunctions

8
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on both sides of the discontinuity have the same shape, therefore boundary conditions on either side of the discontinuity can

be exactly satisfied by these eigenfunctions, therefore there is no mode conversion in this model, in either direction. Figure 6

demonstrates this with SWRT results.

4 Conclusions and Discussion

This paper has described the SWRT code and used it to demonstrate cross-branch mode coupling, of both Love and Rayleigh5

waves, in simple 2D models for which previously published results showed only self coupling. SWRT provides a consolidated

implementation of sophisticated algorithms by previous authors, which is fully capable of modelling mode conversions arising

from normal incidence at a single lateral discontinuity. These algorithms are more accurate than that of Alsop66, whose ability

to model mode conversion has been known since the original author’s work.

We conclude with remarks on the transferability and flexibility of the SWRT code. Whilst the code has been written to10

work with a specific format of input file (containing the surface wave eigenfunctions), it is modular with respect to file input:

the eigenfunction-reading module of SWRT, which has nothing to do with the algorithms discussed in this paper, can simply

be replaced in order to adapt the code to differently formatted input files. Possible additional work may be to modify the

expressions for the coupling coefficients in the main programs, depending on the theoretical definitions of the eigenfunctions.

As a further comment on flexibility, there is no restriction on the type of normalization that the input eigenfunctions must15

obey; only the expressions for surface ratios will need modification if the eigenfunctions are not normalised to unit surface

displacement. Finally, whilst results have been presented in this paper only for the case of an incident fundamental mode,

application of SWRT to the case of arbitrary mode number being incident, can be trivially achieved.

Code availability. SWRT is available via GitHub (https://github.com/arjundatta23/sw_reftrans.git)

Appendix A: Rayleigh wave expressions in the Green’s function method20

The Rayleigh wave stress-displacement vector defined by Gomberg and Masters (1988) is β = {β1,β2,β3,β4}, the four com-

ponents being proportional to uz,ux,σzz and σxz respectively:

ux =
(−β2

ω

)
ei(kx−ωt)

uz = i

(
β1

ω

)
ei(kx−ωt)

σxz =−β4e
i(kx−ωt)

σzz = iβ3e
i(kx−ωt) (A1)

9
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For the type of problem under consideration, with the plane interface being normal to the x−direction, the required com-

ponents of traction are σxz and σxx. The latter can be written in terms of β1 and β2 (with the phase factor omitted for

convenience):

σxx = λ

[
∂ux

∂x
+
∂uz

∂z

]
+ 2µ

∂ux

∂x

=
i

ω

[
λ
dβ1

dz
− k(λ+ 2µ)β2

]
= iψxx (A2)5

The first requirement is to obtain an expression for the scalar product Jmn = 2Hmn. Using (A2) and the first 3 parts of (A1),

Jmn =

∞∫

0

(σ∗m ·un−u∗m ·σn)dz

=

∞∫

0

[
(−iψm

xxx̂−βm
4 ẑ)

(
−β

n
2

ω
x̂+

iβn
1

ω
ẑ

)
−
(
−β

m
2

ω
x̂− iβm

1

ω
ẑ

)
(iψn

xxx̂−βn
4 ẑ)
]
dz

=
i

ω

∞∫

0

[ψm
xxβ

n
2 +ψn

xxβ
m
2 −βm

4 β
n
1 −βn

4 β
m
1 ]dz (A3)

So the norm required in equations (15) is

Jm =
2i
ω

∞∫

0

[ψm
xxβ

m
2 −βm

4 β
m
1 ]dz10

Similarly the expressions for the coupling integrals Prt and Sst can be evaluated using (15) and the result is Eq. (17) of the

main text.

Appendix B: Comparison with published results

B1 The GAl method

Figure A1 provides a comparison of SWRT results with published results, for the GAl method (Love wave case).15

B2 The GF method

Figure A2 provides a comparison of SWRT results with published results, for the GF method (Rayleigh wave case).

B3 The Alsop method

Figure A3 shows SWRT results computed by the Alsop method; presented in the same format as Alsop66 for a visual compar-

ison.20

10
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Figure 1. Schematic representation of ‘Model L’. Layer thicknesses are shown in km and units for velocity and density are km/s and

gm/cc respectively. Note that crustal thickness on the right-hand side was originally 7 km, but is modified to 5 km for comparisons with

finite difference results in this study. The layer thickness of 5 km facilitates the use of a 2.5 km FD grid, keeping the numerical problem

computationally tractable (a 7 km thick layer would require a much finer FD grid spacing of 1 km).
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Figure 2. Transmission surface ratio obtained by the GAl method (solid lines) and GF method (dashed lines with circles), for an incident

Love wave fundamental mode (mode 0) propagating through the original model L in the forward direction (left) and backward direction

(right). The SWRT package accounts for all the modes that exist in a given medium at a given frequency; note that in this figure the highest

modes, where they exist, have negligible amplitudes. Here and in all following figures, the various surface wave modes are labeled according

to their mode number, starting from 0 for the fundamental and increasing successively for each higher mode.
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(b)

Figure 3. Transmission surface ratios obtained from the SWRT code (solid lines) and FD calculations (dots), for an incident Love wave

fundamental mode propagating through the modified model L in the forward direction. (a) Using the GAl method; (b) using the GF method;

(c) using the Alsop method. Note that the FD results are the same in all three plots. The last plot (c) is shown to highlight the weaker

performance of the Alsop method (at the low frequency end for the first and second higher modes), compared to the two methods which are

the focus of this paper.
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Figure 4. Transmission surface ratio obtained by the GF method (solid lines) and FD calculations (dots), for an incident Rayleigh wave

fundamental mode propagating through model L in the forward direction. Note that the conversion to higher modes is much weaker than in

the Love wave case, but the SWRT result is in good agreement with the FD result.
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Figure 5. Schematic representation of the model of Sato (1961). Units of layer parameters are the same as in Figure 1.
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Figure 6. Transmission surface ratios for an incident Love wave fundamental mode propagating in the forward direction (left) and backward

direction (right) in the Sato model. Shown are results from the GAl method (solid lines), the GF method (circles) and the method of Alsop

(stars). Even though higher modes exist in the model at the frequencies considered and SWRT by default computes coupling to all modes

that exist at any given frequency, all three methods exactly predict that there is no mode conversion.
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Figure A1. Left: Fundamental mode Love wave surface transmission ratios for models ‘F’ and ‘L’, which were used by GregAl74 as well

as ItsYan85. To be compared with figure 5 of ItsYan85. Right: SWRT result for model L (solid line, same as in left panel) compared with

values obtained by manually digitising figure 5 of ItsYan85 (circles).
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Figure A2. Rayleigh wave fundamental mode transmission surface ratios for two types of models taken from ItsYan85: (a) models ‘F’ and

‘L’, same as for Fig. A1. (b) the deep fault model, figure 10 of ItsYan85. In both cases the top panel shows the SWRT results; bottom

panel compares these (lines) with manually digitised values (circles) obtained from figure 9 and figure 11 – for (a) and (b) respectively – of

ItsYan85.
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Figure A3. Love wave surface transmission ratios (left) and reflection coefficients (right) for an incident fundamental mode propagating in

the forward direction through three varieties of Alsop66’s M-discontinuity step model. The model varieties are indicated by the geometrical

parameter α (see figure 13 of Alsop66 for its definition). Values obtained with SWRT (solid lines for the fundamental mode, dashed lines for

the first overtone) are nearly identical to the original results of Alsop66 (its figures 14 and 15). The only apparent discrepancy is in the sign

of the transmitted first higher mode for the α= 0.1 model, which was wrongly plotted by Alsop66.
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